Highly asymmetric Pummerer-type cyclization of chiral, non-racemic $\boldsymbol{\beta}$-amido sulfoxides

Yasuyuki Kita, ${ }^{*, a}$ Norio Shibata, ${ }^{a}$ Noriyuki Kawano, ${ }^{a}$ Takashi Tohjo, ${ }^{,}$Chino Fujimori, ${ }^{,}$ Keita Matsumoto ${ }^{b}$ and Shigekazu Fujita ${ }^{a}$
${ }^{a}$ Faculty of Pharmaceutical Sciences, Osaka University 1-6, Yamada-oka, Suita, Osaka 565, Japan
${ }^{b}$ Research Center, Taisho Pharmaceutical Co. Ltd., 1-403 Yoshino-cho, Omiya, Saitama 330, Japan

Abstract

The first highly asymmetric Pummerer-type cyclization of chiral, non-racemic β-amido sulfoxides to enantiomerically enriched β-lactams ($80-85 \%$ ee) is described. S - and R-Sulfoxides (S-2a-d and R-2a-c) were treated with O-methyl- O-tert-butyldimethylsilyl ketene acetal 1 in the presence of a catalytic amount of zinc chloride in methylene dichloride to give predominantly the corresponding $4 R$ - and $4 S$ - β-lactams (R-3a-d and S-3a-c) in more than 80% ee. These results show that the stereoinduction is governed by the absolute configuration of the sulfoxides. Optically pure R - and S-3c were readily obtained by simple recrystallization in about 60% yield. The usefulness of the chiral, non-racemic 4 -tolylsulfanyl- β-lactams 3 3-d has been shown by their conversion into the key intermediate 11 for the optically pure carbapenem antibiotic, (+)-PS-5.

The asymmetric Pummerer reaction of chiral, non-racemic sulfoxides, ${ }^{1}$ a self-immolative-type asymmetric induction, is of significant interest, since it allows the synthesis of enantiomerically pure α-substituted sulfides. ${ }^{2}$ The intramolecular version of the asymmetric Pummerer-type reaction is especially useful for the synthesis of optically active heterocyclic compounds. ${ }^{3.4}$ Few examples of these types of reactions have been reported, the enantiomeric excess (ee) yields of which were low. ${ }^{3.4}$ Several years ago, we reported a novel silicon-induced Pummerer-type reaction of sulfoxides using O-methyl-O-tert-butyldimethylsilyl ketene acetal 1, which gave α-siloxy sulfides under mild conditions. ${ }^{5}$ This we applied to the intramolecular cyclization of ω-amido sulfoxides to give α-thio- N-heterocycles involving 4to 7 -membered α-thiolactams, ${ }^{4.6}$ and the first highly asymmetric Pummerer-type reaction of chiral, non-racemic acyclic sulfoxides which gave enantiomerically enriched α-siloxy sulfides in high yields ${ }^{7}$ [eqn. (1)]. Very recently, we briefly communicated ${ }^{8}$ the first highly asymmetric intramolecular cyclization of chiral, non-racemic β-amido sulfoxides $\mathbf{2 a - d}$ leading to enantiomerically enriched β-lactams ($80-85 \%$ ee) in good yields using our silicon-induced Pummerer-type cyclization ${ }^{4,6}$ [eqn. (2)]. Here we report a full account of our studies on the highly asymmetric Pummerer-type cyclization of chiral, non-racemic β-amido sulfoxides 2 a -d leading to the enantiomerically enriched β-lactams 3a-d.

Asymmetric Pummerer-type cyclization induced by O-silylated

 ketene acetalThe starting chiral, non-racemic sulfoxides $\mathbf{2 a - d}$ were prepared in good yield from the known chiral, non-racemic carboxylic acid 4^{9} by condensation with the corresponding amine in the presence of 1,3-dicyclohexylcarbodiimide (DCC) in dimethylformamide (DMF) (Scheme 2).

Treatment of the optically pure S-sulfoxide 2 a , which has a chiral amido group, under the standard silicon-induced Pummerer conditions ${ }^{4.6}$ (1 , cat. zinc iodide, acetonitrile) gave R - β-lactam 3a in 60% ee (72% chemical yield) stereoselectively. A change in the reaction conditions from catalytic zinc iodideacetonitrile to zinc chloride-methylene dichloride improved the ee. The use of these conditions was found to give the best results. Thus, S - and R-sulfoxides (S)-2a-d and (R)-2a-c were treated with 1 in the presence of a catalytic amount of zinc chloride in methylene dichloride to give predominantly the

Scheme 2
corresponding $4 R$ - and $4 S$ - β-lactams, (R)-3a-d and (S) - 3a-c, in more than 80% ee. The N-silylated 4-thio- β-lactam was converted into the known β-lactam antibiotics. ${ }^{10}$ These results show that the stereoinduction is influenced by the absolute configuration of the sulfoxides (Table 1). Optically pure (R) and (S)-3c were readily obtained by simple recrystallization in about 60% chemical yield. The present Pummerer cyclization shows higher optical induction than the earlier described method. ${ }^{3,4}$

The absolute stereochemistry at the newly generated chiral centre of the β-lactams 3a-d was established on the basis of CD results (Table 2), which showed a strong positive or negative Cotton effect at 210-220 nm (Octant rule). This agreed with the value for monocyclic β-lactams reported by Reling and

Table 1 Asymmetric Pummerer-type cyclization of chiral, non-racemic sulfoxides (2) with 1

2a-d	R	Conditions	3	Product ${ }^{a}$	
				\% Ee ${ }^{d}(\%$ Yield $)$	$[\alpha]_{\mathrm{D}}\left(c, \mathrm{CHCl}_{3}\right)$
(S)-2a	$\mathrm{CH}(\mathrm{Me}) \mathrm{Ph}^{\text {b }}$	$0^{\circ} \mathrm{C}, 1 \mathrm{~d}^{\text {c }}$	(R)-3a	60^{e} (72)	$-98.8(1.96)^{f}$
(S)-2a	$\mathrm{CH}(\mathrm{Me}) \mathrm{Ph}^{\text {b }}$	$0^{\circ} \mathrm{C}, 3 \mathrm{~d}$	(R)-3a	$82^{e}(96)$	$-98.8(1.96)^{r}$
(R)-2a	$\mathrm{CH}(\mathrm{Me}) \mathrm{Ph}^{\text {b }}$	$0^{\circ} \mathrm{C}, 3 \mathrm{~d}$	(S)-3a	85° (89)	$+116(0.954)^{f}$
(S)-2b	$\mathrm{CH}_{2} \mathrm{Ph}$	$5^{\circ} \mathrm{C}, 6 \mathrm{~d}$	(R)-3b	80 (54)	-73.2 (1.01)
(R)-2 \mathbf{b}	$\mathrm{CH}_{2} \mathrm{Ph}$	$5^{\circ} \mathrm{C}, 6 \mathrm{~d}$	(S)-3b	82 (54)	+ 75.2 (0.934)
(S)-2c	CHPh_{2}	$15^{\circ} \mathrm{C}, 2 \mathrm{~d}$	(R)-3c	80 (84)	-37.0 (0.303)
(R)-2c	CHPh_{2}	$15^{\circ} \mathrm{C}, 2 \mathrm{~d}$	(S)-3c	83 (90)	+ 38.4 (0.522)
(S)-2d	$\mathrm{CH}_{2}-\mathrm{O}-\mathrm{BrPh}$	$5^{\circ} \mathrm{C}, 7 \mathrm{~d}$	(R)-3d	83 (59)	-59.2 (1.49)

${ }^{a}$ Small amounts of α-siloxy- β-amido sulfides were obtained as side-products in all reactions. ${ }^{b}(S)$-Phenethylamine was used. ${ }^{c} \mathrm{ZnI}_{2}$ was used as a catalyst in MeCN. ${ }^{d} \mathrm{Ee}$ value was determined by ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ with $\mathrm{Eu}(\mathrm{hfc})_{3} .{ }^{e} \% \mathrm{De} .{ }^{f}[\alpha]_{\mathrm{D}}$ Value was determined from a diastereoisomerically pure sample.

Table 2 CD spectrum of chiral compound 3

$\mathbf{3}$	$\mathrm{CD}(\mathrm{MeOH}) \lambda \operatorname{ext}(\Delta \varepsilon)$
$(R)-\mathbf{3 a}$	$253(+2.9), 242(0), 222(-20.4)^{a}$
$(R)-\mathbf{3 a}$	$253(+2.9), 242(0), 222(-20.4)^{a}$
$(S)-\mathbf{3 a}$	$254(-5.7), 240(0), 221(+24.5)^{a}$
$(R) \mathbf{- 3 b}$	$252(+3.1), 239(0), 220(-16.6)$
$(S)-\mathbf{3 b}$	$252(-2.6), 240(0), 220(+19.2)$
$(R)-\mathbf{3 c}$	$253(+5.1), 243(0), 221(-21.5)^{b}$
$(S)-\mathbf{3 c}$	$255(-4.3), 243(0), 221(+21.4)^{b}$
$(R)-\mathbf{3 d}$	$253(+1.5), 240(0), 221(-14.4)$

${ }^{a}$ CD spectrum was obtained from a diasteroisomerically pure sample. ${ }^{b}$ CD spectrum was obtained from an enantiomerically pure sample.

(R) -5

Fig. 1 X-Ray crystallographic structure of $(R)-5$

$(S)-2$

Fig. 2
Jensen. ${ }^{11}$ The absolute stereochemistry was finally confirmed by an X-ray crystallographic determination of the oxidized derivative $(R)-5$ of $(R)-3 c$. (Fig. 1)
The following mechanism is proposed to explain the results and for which the transition state is analysed for the reaction of (S)-2 with 1 (Fig. 2). Silylation of (S)-2 with 1 affords an intermediate \mathbf{A} which may then yield a chiral pseudo isothiazolone derivative \mathbf{B}^{12} through axial attack of the amido anion generated by abstraction with the ester anion and elimination of the siloxy ligand. The hydrogen neighbouring the sulfur atom is then removed by the siloxy anion and the amido ligand then undergoes 1,2 rearrangement from the α-face to give the β-lactam (R)-3. Of course, an alternative mechanism involving deprotonation of the $\alpha-S$-hydrogen of \mathbf{A} followed by asymmetric nucleophilic ring closure cannot be ruled out completely.

9; $\mathrm{R}=\mathrm{CHPh}_{2}, \mathrm{R}^{\prime}=\mathrm{H}$
$\mathbf{R}=\mathbf{R}^{\prime}=\mathbf{H}$

Scheme 3

Formal synthesis of the antibiotic (+)-PS-5
The usefulness of the chiral, non-racemic 4 -tolylsulfanyl β lactams 3a-d was shown by the conversion of $R-3 \mathbf{c}$ into the optically active carbapenem antibiotic (+)-PS-5. Thus, ethylation at the C-3 position of pure R-3c gave the trans-azetidin-2-one 6, which was oxidized with MCPBA to give the sulfoxide 7. Treatment of $\mathbf{7}$ with $\mathbf{1}$ in the presence of a catalytic amount of zinc iodide in acetonitrile gave the trans-azetidin-2one 8 selectively. ${ }^{6 b}$ Reduction of 8 with LiAlH_{4}, reductive debenzylation under Birch conditions, and silylation with TBDMSOTf gave the trans-3-ethylazetidin-2-one 11, which is the known key intermediate to $(+)$-PS-5. ${ }^{13,14}$

Experimental

All mps were determined on a Yanaco micro melting point apparatus and are uncorrected. IR absorption spectra were recorded on JASCO HPIR-102 and Shimadzu FTIR-8100 spectrophotometers with CHCl_{3} as a solvent. ${ }^{1} \mathrm{H}$ NMR spectra were measured on JEOL JNM-FX90Q (90 MHz), JEOL JNM-EX270 (270 MHz) and JEOL JNM-GX500 (500 MHz) spectrometers with CDCl_{3} as a solvent and tetramethylsilane as an internal standard unless otherwise noted. Mass spectra (MS) and high-resolution MS were obtained by ESCO EMD-05A and JEOL JMS-D300 mass spectrometers. Optical rotations were measured in 1 - dm cells of $1 \mathrm{~cm}^{3}$ capacity with a PerkinElmer 241 instrument and are recorded in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2}$ g ${ }^{1}$. E. Merck silica gel 60 ($70-230$ mesh ASTM) for column chromatography and E. Merck pre-coated TLC plates with silica gel F_{254} for preparative TLC (PLC) were used. Organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

General procedure for the synthesis of optically pure ω-amido

 sulfoxides 2a-dDCC (1.10 mmol), a solution of 1-hydroxybenzotriazole (HOBT) (1.10 mmol) in DMF ($3 \mathrm{~cm}^{3}$), $\mathrm{RNH}_{2}(1.20 \mathrm{mmol})$ and triethylamine (2.40 mmol) were added to a solution of optically pure compound $4(1.00 \mathrm{mmol})$ in DMF $\left(8 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture stirred at room temperature for $1-5 \mathrm{~d}$. The white precipitate was filtered off and the filtrate was concentrated on a rotary evaporator to give a crude oil, which was purified by
column chromatography on silica gel eluting with AcOEt in hexane to give the corresponding optically pure ω-amido sulfoxide 2 in yields in the range $57-95 \%$.
(\boldsymbol{S})- N - $[(S)$-Phenethyl]-p-tolylsulfinylpropionamide (\boldsymbol{S})-2a.
Compound (S)-4 $\left\{[\alpha]_{\mathrm{D}}^{15}-172(c 0.793, \mathrm{MeOH}), 150 \mathrm{mg}, 0.708\right.$ $\mathrm{mmol}\}$, DCC ($160 \mathrm{mg}, 0.779 \mathrm{mmol}$), HOBT ($105 \mathrm{mg}, 0.779$ mmol), (S)-phenethylamine ($103 \mathrm{mg}, 0.850 \mathrm{mmol}$), triethylamine ($172 \mathrm{mg}, 1.70 \mathrm{mmol}$) and DMF ($3 \mathrm{~cm}^{3}$) gave compound (S)-2a ($133 \mathrm{mg}, 60 \%$) as colourless crystals; $[\alpha]_{\mathrm{D}}^{26}-217$ (c $0.158, \mathrm{CHCl}_{3}$) $\mathrm{mp} 135.7-137^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 3280, 1650, 1545, 1080, 1040 and 1020; $\delta_{\mathrm{H}} 1.48$ ($3 \mathrm{H}, \mathrm{d}, J 7.3$, NCHMe), 2.40 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 2.45 ($1 \mathrm{H}, \mathrm{ddd}, J 5.5,7.3$ and 13.4, $\mathrm{C} H^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{CO}$), $2.72\left(1 \mathrm{H}, \mathrm{dt}, J 13.4\right.$ and 7.3, $\mathrm{CH}^{\mathrm{a}} H^{\mathrm{b}} \mathrm{CO}$), 2.92 [1 H , ddd, $J 5.5,7.3$ and $\left.13.4, \mathrm{CH}^{2} \mathrm{H}^{\mathrm{b}} \mathrm{S}(\mathrm{O})\right], 3.26[1 \mathrm{H}, \mathrm{dt}, J 13.4$ and 7.3, $\left.\mathrm{CH}^{\mathrm{a}} H^{\mathrm{b}} \mathrm{S}(\mathrm{O})\right], 5.08(1 \mathrm{H}$, quint, $J 7.3, \mathrm{NCHMe}), 6.52(1$ $\mathrm{H}, \mathrm{d}, J 7.3, \mathrm{NH})$ and $7.23-7.47(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 315\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{M}^{+}, 315.1321 . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$ requires $M, 315.1293$)
$(R)-N-[(S)$-Phenethyl]-p-tolylsulfinylpropionamide (R)-2a.
Compound $(R)-4\left\{[\alpha]_{\mathrm{D}}^{15}+171\right.$ (c $\left.0.703, \mathrm{MeOH}\right)$, (lit., ${ }^{9}[\alpha]_{\mathrm{D}}^{15}$ $+188(c 0.7, \mathrm{MeOH}), 300 \mathrm{mg}, 1.42 \mathrm{mmol}\}, \mathrm{DCC}(321 \mathrm{mg}, 1.56$ mmol), HOBT ($211 \mathrm{mg}, 1.56 \mathrm{mmol}$), (S)-phenethylamine (206 $\mathrm{mg}, 1.70 \mathrm{mmol}$), triethylamine ($344 \mathrm{mg}, 3.41 \mathrm{mmol}$) and DMF $\left(4 \mathrm{~cm}^{3}\right)$ gave compound (R)-2a ($297 \mathrm{mg}, 66 \%$) as colourless crystals; $[\alpha]_{\mathrm{D}}^{26}+110\left(c 0.542, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 119-122.5^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); m/z $315\left(\mathrm{M}^{+}\right)$(Found: C, 68.25; H, 6.8; N, $4.75 \% ; \mathrm{M}^{+}, 315.1295 . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 68.55 ; \mathrm{H}, 6.70$; N, 4.45\%; M, 315.1293).
((\mathbf{S}) - N -Benzyl-p-tolylsulfinylpropionamide (\boldsymbol{S})-2b. Compound (S) -4 ($150 \mathrm{mg}, 0.708 \mathrm{mmol}$), DCC ($160 \mathrm{mg}, 0.779 \mathrm{mmol}$), HOBT ($105 \mathrm{mg}, 0.779 \mathrm{mmol}$), benzylamine ($90.8 \mathrm{mg}, 0.850$ mmol), triethylamine ($172 \mathrm{mg}, 1.70 \mathrm{mmol}$) and DMF ($8 \mathrm{~cm}^{3}$) gave compound (S) $\mathbf{- 2 b}$ ($200 \mathrm{mg}, 95 \%$) as colourless crystals; $[x]_{\mathrm{D}}^{25}-196\left(c \quad 0.408, \mathrm{CHCl}_{3}\right)$; $\mathrm{mp} 85.2-86.5^{\circ} \mathrm{C}$ (hexane$\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }}\left(\mathrm{cm}^{-1} 3441,1672,1086,1036\right.$ and 1015; $\delta_{\mathrm{H}} 2.42$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.48\left(1 \mathrm{H}\right.$, ddd, $J 6.0,7.6$ and $\left.15.5, \mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{CO}\right)$, $2.74\left(1 \mathrm{H}, \mathrm{dt}, J 15.5\right.$ and $\left.7.6, \mathrm{CH}^{\mathrm{a}} H^{\mathrm{b}} \mathrm{CO}\right), 2.97[1 \mathrm{H}$, ddd, $J 6.0$, 7.6 and $\left.13.5, \mathrm{C}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{S}(\mathrm{O})\right], 3.29[1 \mathrm{H}, \mathrm{dt}, J 13.5$ and 7.6 , $\mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{S}(\mathrm{O}) \mathrm{I}, 4.41$ ($2 \mathrm{H}, \mathrm{d}, J 5.6, \mathrm{NCH}_{2} \mathrm{Ph}$), 6.23 (br s, 1 H , NH) and 7.20-7.50 (m, $9 \mathrm{H}, \mathrm{ArH}) ; m / z 301\left(\mathrm{M}^{+}\right)$(Found: C, $67.55 ; \mathrm{H}, 6.35 ; \mathrm{N}, 4.65 ; \mathrm{S}, 10.60 \% ; \mathrm{M}^{+}, 301.1117 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 67.75 ; \mathrm{H}, 6.35 ; \mathrm{N}, 4.65 ; \mathrm{S}, 10.65 \% ; M, 301.1136$).
(R)- \boldsymbol{N}-Benzyl-p-tolylsulfinylpropionamide (\boldsymbol{R})-2b. Compound (R)-4 ($267 \mathrm{mg}, 1.26 \mathrm{mmol}$), DCC ($272 \mathrm{mg}, 1.32 \mathrm{mmol}$), HOBT $(186 \mathrm{mg}, 1.38 \mathrm{mmol})$, benzylamine ($161 \mathrm{mg}, 1.51 \mathrm{mmol}$), triethylamine ($152 \mathrm{mg}, 1.51 \mathrm{mmol}$) and DMF ($5 \mathrm{~cm}^{3}$) gave compound (R)-2b ($351 \mathrm{mg}, 93 \%$) as colourless crystals; $[\alpha]_{\mathrm{D}}^{25}$ +194 (c $0.241, \mathrm{CHCl}_{3}$); $\mathrm{mp} 83.5-84.7^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $m / z 301\left(\mathrm{M}^{+}\right)$(Found: C, 67.45; H, 6.35; N, 4.65; S, 10.55\%; M^{+}, 301.1137. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 67.75 ; \mathrm{H}, 6.35 ; \mathrm{N}$, 4.65 ; S, 10.65%; $M, 301.1137$).
(\boldsymbol{S})- N -Diphenylmethyl-p-tolylsulfinylpropionamide (\boldsymbol{S})-2c. Compound (S)-4 ($165 \mathrm{mg}, 0.778 \mathrm{mmol}$), DCC ($176 \mathrm{mg}, 0.856$ mmol), HOBT ($116 \mathrm{mg}, 0.856 \mathrm{mmol}$), diphenylmethylamine ($171 \mathrm{mg}, 0.934 \mathrm{mmol}$), triethylamine ($189 \mathrm{mg}, 1.87 \mathrm{mmol}$) and DMF ($3 \mathrm{~cm}^{3}$) gave compound $(S)-2 \mathrm{c}(167 \mathrm{mg}, 57 \%)$ as colourless crystals; $[x]_{\mathrm{D}}^{25}-108$ (c 2.17, CHCl_{3}); $\mathrm{mp} \quad 141.5-143{ }^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3450,3000,1660,1085,1020$ and $1015 ; \delta_{\mathrm{H}} 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.54(1 \mathrm{H}$, ddd, $J 5.9,7.5$ and 14.5 , $\mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{CO}$), $2.84\left(1 \mathrm{H}, \mathrm{dt}, J 14.5\right.$ and 7.5, $\left.\mathrm{CH}^{\mathrm{a}} H^{\mathrm{b}} \mathrm{CO}\right), 2.92$ [1 H , ddd, $J 5.9,7.5$ and $\left.13.5, \mathrm{C} H^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{S}(\mathrm{O})\right], 3.25[1 \mathrm{H}, \mathrm{dt}, J 13.5$ and 7.5, $\left.\mathrm{CH}^{\mathrm{a}} H^{\mathrm{b}} \mathrm{S}(\mathrm{O})\right], 6.20\left(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{CHPh}_{2}\right), 7.14(1 \mathrm{H}, \mathrm{d}$, $J 7.9, \mathrm{NH})$ and $7.20-7.46(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}) ; m / z 377\left(\mathrm{M}^{+}\right)$ (Found: C, 72.8; H, 6.25; N, 4.05\%; M^{+}, 377.1437. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 73.15 ; \mathrm{H}, 6.15 ; \mathrm{N}, 3.70 \% ; M$, 377.1449).
(R)- N-Diphenylmethyl-p-tolylsulfinylpropionamide (\boldsymbol{R})-2c.
Compound (R)-4 ($497 \mathrm{mg}, 2.34 \mathrm{mmol}$), DCC ($531 \mathrm{mg}, 2.58$ mmol), HOBT ($348 \mathrm{mg}, 2.58 \mathrm{mmol}$), diphenylmethylamine (515
$\mathrm{mg}, 2.81 \mathrm{mmol}$), triethylamine ($568 \mathrm{mg}, 5.63 \mathrm{mmol}$) and DMF ($5 \mathrm{~cm}^{3}$) gave compound (R)-2c ($515 \mathrm{mg}, 58 \%$) as colourless crystals; $[\alpha]_{\mathrm{D}}^{2 \mathrm{O}}+171$ (c $1.13, \mathrm{CHCl}_{3}$); mp $143.5-144.2^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); m/z $377\left(\mathbf{M}^{+}\right)$(Found: $\mathbf{M}^{+}, 377.1470$. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ requires $M, 377.1450$).
(\mathbf{S})- N -(o-Bromobenzyl)-p-tolylsulfinylpropionamide (\boldsymbol{S})-2d.
Compound (S)-4 ($501 \mathrm{mg}, 2.36 \mathrm{mmol}$), DCC ($584 \mathrm{mg}, 2.84$ mmol), HOBT ($383 \mathrm{mg}, 2.84 \mathrm{mmol}$), o-bromobenzylamine hydrochloride ($631 \mathrm{mg}, 2.84 \mathrm{mmol}$), triethylamine ($573 \mathrm{mg}, 5.67$ mmol) and DMF ($10 \mathrm{~cm}^{3}$) gave compound ($($) - $2 \mathrm{~d}(855 \mathrm{mg}, 95 \%$) as colourless crystals; $[\alpha]_{\mathrm{D}}^{25}-149.5$ ($c 0.612, \mathrm{CHCl}_{3}$); mp 109$111^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max } / \mathrm{cm}^{-1} 3440,3290,3010,2930$, 1670, 1240, 1090, 1030 and $1010 ; \delta_{\mathrm{H}} 2.41$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $2.49(1 \mathrm{H}$, ddd, $J 6,7.5$ and $\left.14, \mathrm{C}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{CO}\right), 2.75(1 \mathrm{H}, \mathrm{dt}, J 14$ and 7.5 , $\mathrm{CH}^{\mathrm{a}} H^{\mathrm{b}} \mathrm{CO}$), $2.95\left[1 \mathrm{H}\right.$, ddd, J 6, 7.5 and 13.5, $\left.\mathrm{C}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{S}(\mathrm{O})\right]$, $3.26\left[1 \mathrm{H}, \mathrm{dt}, J 13.5\right.$ and $\left.7.5, \mathrm{CH}^{\mathrm{a}} H^{\mathrm{b}} \mathrm{S}(\mathrm{O})\right], 4.48(2 \mathrm{H}, \mathrm{d}, J 5.6$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 6.56(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH})$ and $7.11-7.56(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z$ 379 (${ }^{+}$) (Found: C, 53.5; H, 4.75; N, 3.65\%; M ${ }^{+}$, 379.0251. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrNO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 53.70 ; \mathrm{H}, 4.80 ; \mathrm{N}, 3.70 \% ; M$, 379.0242).

General procedure for the Pummerer-type reaction of O-silylated ketene acetal 1 with sulfoxides $2 a-d$

To a stirred solution of the sulfoxide $2(0.100 \mathrm{mmol}), \mathrm{ZnCl}_{2}$ or $\mathrm{ZnI}_{2}(0.01-0.05 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$ was added dropwise ketene tert-butyldimethylsilyl methyl acetal 1 (0.500 mmol) under the conditions indicated in Table 1 for $1-5$ d under nitrogen. The mixture was then poured into saturated aqueous sodium hydrogen carbonate and repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was washed with brine, dried, and evaporated. The residue was purified by PLC to give the corresponding enantiomerically enriched β-lactams 3a-d in yields in the range $54-96 \%$.
(4R)-1-[(S)-Phenethyl]-4-p-tolylsulfanylazetidin-2-one (R)-3a. (i) Compound (S)-2a ($15.4 \mathrm{mg}, 0.049 \mathrm{mmol}$), the acetal 1 (46.0 $\mathrm{mg}, 0.244 \mathrm{mmol}), \mathrm{ZnI}_{2}(1.6 \mathrm{mg}, 0.005 \mathrm{mmol})$ and $\mathrm{MeCN}(2$ cm^{3}) gave compound (R)-3a ($10.4 \mathrm{mg}, 72 \%, 60 \%$ de) as a pale yellow oil. Pure (R)-3a was isolated in a pure state by column chromatography; $[\alpha]_{\mathrm{D}}^{19}-98.8\left(c 1.96, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3020$ and 1750; $\delta_{\mathrm{H}} 1.79(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{NCHMe}), 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $2.77\left(1 \mathrm{H}, \mathrm{dd}, J 2.3\right.$ and $\left.14.9,3-\mathrm{H}^{\mathrm{a}}\right), 3.16(1 \mathrm{H}$, dd, $J 5.0$ and $\left.14.9,3-\mathrm{H}^{\mathrm{b}}\right), 4.55(1 \mathrm{H}, \mathrm{q}, J 7.3$, NCHMe), $4.58(1 \mathrm{H}, \mathrm{dd}$, $J 2.3$ and $5.0,4-\mathrm{H})$ and $7.10-7.36(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}) ; m / z 297$ $\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 297.1176. $\mathrm{C}_{18} \mathrm{H}_{19}$ NOS requires M, 297.1188).
(ii) Compound (S)-2a ($22.5 \mathrm{mg}, 0.071 \mathrm{mmol}$), the acetal 1 ($67.1 \mathrm{mg}, 0.357 \mathrm{mmol}$), $\mathrm{ZnCl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ complex ($2.20 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0.016 \mathrm{~cm}^{3}, 0.036 \mathrm{mmol}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ cm^{3}) gave compound (R)-3a ($20.4 \mathrm{mg}, 96 \%, 82 \%$ de) as an oil.
(4S)-1-[(S)-Phenethyl-4-p-tolylsulfanylazetidin-2-one (S)-3a. Compound (R)-2a ($30.6 \mathrm{mg}, 0.097 \mathrm{mmol}$), the acetal $1(91.4 \mathrm{mg}$, 0.486 mmol), $\mathrm{ZnCl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ complex ($2.20 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0.022 \mathrm{~cm}^{3}, 0.049 \mathrm{mmol}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ gave compound (S)-3a ($25.8 \mathrm{mg}, 89 \%, 85 \%$ de) as a pale yellow oil. Pure (S)-3a was isolated in a pure state by column chromatography; $[\alpha]_{\mathrm{D}}^{19}+116\left(c 0.954, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3000$ and 1745; $\delta_{\mathrm{H}} 1.72(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{NCHMe}), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $2.81\left(1 \mathrm{H}, \mathrm{dd}, J 2.3\right.$ and $\left.14.8,3-\mathrm{H}^{\mathrm{a}}\right), 3.18(1 \mathrm{H}, \mathrm{dd}, J 5.0$ and 14.8 , $\left.3-\mathrm{H}^{\mathrm{b}}\right), 4.67(1 \mathrm{H}, \mathrm{dd}, J 2.3$ and $5.0,4-\mathrm{H}), 4.90(1 \mathrm{H}, \mathrm{q}, J 7.3$, NCHMe) and 7.10-7.36 (m, $9 \mathrm{H}, \mathrm{ArH}$); m/z $297\left(\mathrm{M}^{+}\right.$) (Found: $\mathrm{M}^{+}, 297.1186 . \mathrm{C}_{18} \mathrm{H}_{19}$ NOS requires M, 297.1188).
(4R)-1-Benzyl-4-p-tolylsulfanylazetidin-2-one (R)-3b. Compound (S)-2b $(40.0 \mathrm{mg}, 0.133 \mathrm{mmol}$), the acetal $\mathbf{1}(125 \mathrm{mg}, 0.665$ mmol), $\mathrm{ZnCl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ complex ($2.20 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0.03 \mathrm{~cm}^{3}, 0.067 \mathrm{mmol}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ gave compound (R)-3b ($21.1 \mathrm{mg}, 54 \%, 80 \%$ ee) as a colourless oil; $[\alpha]_{\mathrm{D}}^{21}-73.2\left(c 1.01, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2922$ and $1760 ; \delta_{\mathrm{H}} 2.35$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $2.79\left(1 \mathrm{H}, \mathrm{dd}, J 2.0\right.$ and $\left.15,3-\mathrm{H}^{\mathrm{a}}\right), 3.22(1 \mathrm{H}, \mathrm{dd}, J$
5.0 and $\left.15,3-\mathrm{H}^{\mathrm{b}}\right), 4.08$ and $4.73\left(2 \mathrm{H}, \mathrm{ABq}, J 15.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.69$ ($1 \mathrm{H}, \mathrm{dd}, J 2.0$ and $5.0,4-\mathrm{H}$) and 7.11-7.32 (m, $9 \mathrm{H}, \mathrm{ArH}$); m / z $283\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 283.1022 . \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NOS}$ requires M, 283.1031).
(4S)-1-Benzyl-4-p-tolylsulfanylazetidin-2-one (S)-3b. Compound $(R)-\mathbf{2 b}(39.6 \mathrm{mg}, 0.132 \mathrm{mmol})$, the acetal $1(124 \mathrm{mg}, 0.660$ mmol), $\mathrm{ZnCl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ complex ($2.20 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0.03 \mathrm{~cm}^{3}, 0.066 \mathrm{mmol}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ gave compound (S)-3b $(20.0 \mathrm{mg}, 54 \%, 82 \%$ ee) as a colourless oil; $[\alpha]_{\mathrm{D}}^{21}+75.2\left(c 0.934, \mathrm{CHCl}_{3}\right) ; m / z 283\left(\mathrm{M}^{+}\right)$(Found: C, 71.75; $\mathrm{H}, 6.2 ; \mathrm{N}, 4.85 ; \mathrm{S}, 11.25 \% ; \mathrm{M}^{+}, 283.1015 . \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NOS}$ requires C, 72.05; H, 6.05; N, 4.95; S, 11.30\%; M, 283.1031).
(4R)-1-Diphenylmethyl-4-p-tolylsulfanylazetidin-2-one
(R)-3c. Compound (S)-2c ($30.4 \mathrm{mg}, 0.081 \mathrm{mmol}$), the acetal 1 $\left(75.8 \mathrm{mg}, 0.403 \mathrm{mmol}\right.$), $\mathrm{ZnCl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ complex ($2.20 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0.018 \mathrm{~cm}^{3}, 0.040 \mathrm{mmol}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 cm^{3}) gave compound (R)-3c ($24.3 \mathrm{mg}, 84 \%, 80 \%$ ee) as colourless crystals; $[\alpha]_{\mathrm{D}}^{21}-37.0$ (c $0.303, \mathrm{CHCl}_{3}$). Optically pure $(R)-3 \mathrm{c}$ was isolated easily by recrystallization with hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as colourless crystals; $[\alpha]_{\mathrm{D}}^{21}-51.1$ (c 0.742 , CHCl_{3}); mp 120-122.5 ${ }^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3000$ and $1750 ; \delta_{\mathrm{H}} 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.95(1 \mathrm{H}, \mathrm{dd}, J 2.5$ and 15 , $\left.3-\mathrm{H}^{\mathrm{a}}\right), 3.28\left(1 \mathrm{H}, \mathrm{dd}, J 4.8\right.$ and $\left.15,3-\mathrm{H}^{\mathrm{b}}\right), 4.78(1 \mathrm{H}, \mathrm{dd}, J 2.5$ and 4.8, 4-H), $5.75(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh} 2)$ and $7.03-7.37(14 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $m / z 359\left(\mathrm{M}^{+}\right)$(Found: C, 76.65 ; H, 5.9; N, 3.9; S, 8.75\%; M^{+}, 359.1322. $\mathrm{C}_{23} \mathrm{H}_{21}$ NOS requires $\mathrm{C}, 76.85 ; \mathrm{H}, 5.90 ; \mathrm{N}, 3.90 ; \mathrm{S}$, 8.90%; $M, 359.1344$).
(4S)-1-Diphenylmethyl-4-p-tolylsulfanylazetidin-2-one (\boldsymbol{S})-3c. Compound (R)-2c ($60.2 \mathrm{mg}, 0.160 \mathrm{mmol}$), the acetal $1(150$ $\mathrm{mg}, 0.800 \mathrm{mmol}) \mathrm{ZnCl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ complex ($2.20 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0.036 \mathrm{~cm}^{3}, 0.080 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($6 \mathrm{~cm}^{3}$) gave compound (S)-3c ($51.5 \mathrm{mg}, 90 \%, 83 \%$ ee) as colourless crystals; $[\alpha]_{\mathrm{D}}^{2}+38.4$ (c $0.522, \mathrm{CHCl}_{3}$). Optically pure S-3c was isolated easily by recrystallization with hexane$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as colourless crystals; $[\alpha]_{\mathrm{D}}^{20}+49.4$ (c $0.599, \mathrm{CHCl}_{3}$); $\mathrm{mp} 121.5-123^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); m/z $359\left(\mathrm{M}^{+}\right)$(Found: C, $76.85 ; \mathrm{H}, 5.95 ; \mathrm{N}, 3.9 ; \mathrm{S}, 8.9 \% ; \mathrm{M}^{+}$, 359.1356. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NOS}$ requires C, $76.85 ; \mathrm{H}, 5.90 ; \mathrm{N}, 3.90 ; \mathrm{S}, 8.90 \%$; $M, 359.1344$).

(4R)-1-(o-Bromobenzyl)-4-p-tolylsulfanylazetidin-2-one

(\boldsymbol{R})-3d. Compound (S)-2d ($62.0 \mathrm{mg}, 0.163 \mathrm{mmol}$), the acetal 1 $(153 \mathrm{mg}, 0.815 \mathrm{mmol}), \mathrm{ZnCl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ complex ($2.20 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0.037 \mathrm{~cm}^{3}, 0.082 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6$ cm^{3}) gave compound (R)-3d ($34.8 \mathrm{mg}, 59 \%, 83 \%$ ee) as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{5}-59.2\left(c \quad 1.49, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3020$, 2930 and $1760 ; \delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.60(1 \mathrm{H}, \mathrm{dd}, J$ 1.8 and $\left.15,3-\mathrm{H}^{\mathrm{a}}\right), 2.71\left(1 \mathrm{H}, \mathrm{dd}, J 4.8\right.$ and $\left.15,3-\mathrm{H}^{\mathrm{b}}\right), 4.30$ and $4.63\left(2 \mathrm{H}, \mathrm{ABq}, J 15.5, \mathrm{CH}_{2} \mathrm{Ar}\right), 4.32(1 \mathrm{H}, \mathrm{dd}, J 1.8$ and 4.8 , 4-H) and 6.66-7.49 (m, 8 H, ArH); $m / z 361\left(\mathrm{M}^{+}\right)$(Found: C, $56.15 ; \mathrm{H}, 4.5 ; \mathrm{N}, 3.8 \% ; \mathrm{M}^{+}, 361.0159 . \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNOS}$ requires C, $56.35 ; \mathrm{H}, 4.45 ; \mathrm{N}, 3.85 \%$; $M, 361.0136$).

(4R)-1-Diphenylmethyl-4-p-tolylsulfonylazetidin-2-one (R)-5

MCPBA $(80 \% ; 55.7 \mathrm{mg}, 0.323 \mathrm{mmol})$ was added to a stirred solution of compound (R) $\mathbf{- 3 c}\left(52.8 \mathrm{mg}, 0.147 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(4 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was poured into saturated aqueous sodium hydrogen carbonate and repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried and evaporated. The residue was purified by column chromatography on silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give compound (R) $-5(45.0 \mathrm{mg}, 78 \%$) as colourless crystals; $[\alpha]_{\mathrm{D}}^{22}-86.0$ (c $1.14, \mathrm{CHCl}_{3}$); mp $179.5-181^{\circ} \mathrm{C}$ (hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3030,3010,1770,1320,1300$, 1150, 1140 and $1070 ; \delta_{\mathrm{H}} 2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.06(1 \mathrm{H}, \mathrm{dd}, J 2.8$ and $\left.15,3-\mathrm{H}^{\mathrm{a}}\right)$, $3.15\left(1 \mathrm{H}\right.$, dd, $J 5$ and $\left.15,3-\mathrm{H}^{\mathrm{b}}\right), 4.63(1 \mathrm{H}, \mathrm{dd}, J$ 2.8 and $5,4-\mathrm{H}), 5.68\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right)$ and $7.19-7.60(14 \mathrm{H}, \mathrm{m}$, ArH); m/z 391 (M ${ }^{+}$) (Found: C, 70.45; H, 5.5; N, 3.6; S, $8.05 \% ; \mathrm{M}^{+}, 391.1216 . \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ requires C, $70.55 ; \mathrm{H}, 5.40$; $\mathrm{N}, 3.60 ; \mathrm{S}, 8.20 \%$; M, 391.1243).
(3S,4R)-1-Diphenylmethyl-3-ethyl-4-p-tolylsulfanylazetidin-2one 6
A solution of LiHMDS [prepared from BuLi ($1.60 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $7.31 \mathrm{~cm}^{3}, 11.7 \mathrm{mmol}$) and HMDS ($2.44 \mathrm{~cm}^{3}$, $11.7 \mathrm{mmol})$] in THF $\left(50 \mathrm{~cm}^{3}\right)$ was cooled at $-45^{\circ} \mathrm{C}$ under a N_{2} atmosphere. After being stirred for 30 min , the mixture was treated with EtI ($15.6 \mathrm{~cm}^{3}, 195 \mathrm{mmol}$) followed immediately by a solution of compound $(R)-3 \mathrm{c}(3.5 \mathrm{~g}, 9.75 \mathrm{mmol})$ and HMPA ($1.9 \mathrm{~cm}^{3}$) in THF ($50 \mathrm{~cm}^{3}$). The mixture was stirred for 1 h after which it was diluted with 50% AcOEt in hexane, washed with water and brine, dried and evaporated under reduced pressure. The residue was chromatographed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane to give compound $6(2.87 \mathrm{~g}, 76 \%)$ as colourless crystals; $[\alpha]_{\mathrm{D}}^{24}$ $+3.78\left(c 0.925, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 138.2-139^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3030,3010,2970$ and $1750 ; \delta_{\mathrm{H}} 0.91(3 \mathrm{H}, \mathrm{t}, J 7.4$, MeCH_{2}), 1.55-1.83 ($2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2}$), $2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.07$ (1 H , ddd, $J 2.0,6.1$ and $8.3,3-\mathrm{H}), 4.43(1 \mathrm{H}, \mathrm{d}, J 2.0$, CHS), 5.74 $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right)$ and $7.03-7.39(14 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 387\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{C}, 77.25 ; \mathrm{H}, 6.55 ; \mathrm{N}, 3.6 ; \mathrm{S}, 8.2 \% ; \mathrm{M}^{+}, 387.1634$. $\mathrm{C}_{25} \mathrm{H}_{25}$ NOS requires $\mathrm{C}, 77.50 ; \mathrm{H}, 6.50 ; \mathrm{N}, 3.60 ; \mathrm{S}, 8.30 \% ; M$, 387.1657).

(3S,4R)-1-Diphenylmethyl-3-ethyl-4-p-tolylsulfinylazetidin-2one 7

MCPBA ($749 \mathrm{mg}, 4.34 \mathrm{mmol}$) was added to a stirred solution of compound $6(1.60 \mathrm{~g}, 4.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was then poured into saturated aqueous sodium hydrogen carbonate and repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried and evaporated. The residue was purified by column chromatography on silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give compound 7 (1.75 g , quant.) as colourless crystals; $[\alpha]_{\mathrm{D}}^{20}$ $-110\left(c 0.763, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 142.5-144{ }^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }} / \mathrm{cm}^{1} 3010,2970,1760,1330,1090,1050$ and $1020 ; \delta_{\mathrm{H}} 0.46$ ($3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{MeCH} 2$) , 1.15-1.46 ($2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2}$), $2.37(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 3.67-3.72(2 \mathrm{H}, \mathrm{br} \mathrm{m}, 3-\mathrm{H}$ and $4-\mathrm{H}), 6.15\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ph}_{2}\right)$ and 7.15-7.48 (14 H, m, ArH); m/z $403\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 403.1614. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$ requires $M, 403.1606$).

(3R,4R)-1-Diphenylmethyl-3-ethyl-4-methoxycarbonylmethyl-azetidin-2-one 8

To a stirred solution of compound $7(800 \mathrm{mg}, 1.99 \mathrm{mmol})$ and $\mathrm{ZnI}_{2}(31 \mathrm{mg}, 0.100 \mathrm{mmol})$ in dry $\mathrm{MeCN}\left(35 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$ was added dropwise over 20 min the acetal 1 ($562 \mathrm{mg}, 2.99 \mathrm{mmol}$). The mixture was poured into saturated aqueous sodium hydrogen carbonate and repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried and evaporated. The residue was purified by column chromatography on silica gel eluting with 20% AcOEt in hexane to give compound $8\left(448 \mathrm{mg}, 75 \%\right.$) as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{23}-22.5$ (c $\left.0.775, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3030,3010$ and $1740 ; \delta_{\mathrm{H}} 0.96(3 \mathrm{H}, \mathrm{t}, J$ 7.4, MeCH_{2}), $1.64-1.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2}\right), 2.39(1 \mathrm{H}, \mathrm{d}, J 8.0$, $\mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{CO}_{2}$), $2.41\left(1 \mathrm{H}, \mathrm{d}, J 5.8, \mathrm{CH}^{\mathrm{a}} H^{\mathrm{b}}\right), 2.84(1 \mathrm{H}, \mathrm{dt}, J 2.0$ and $7.5,3-\mathrm{H}), 3.57(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 3.65(1 \mathrm{H}$, ddd, $J 2.0,5.8$ and 8.0, 4-H), $5.95\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Ph}_{2}\right)$ and $7.23-7.39(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $m / z 337\left(\mathrm{M}^{+}\right)$(Found: C, 74.35; H, 6.95; N, 4.1\%; M^{+}, 337.1687. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $\mathrm{C}, 74.75 ; \mathrm{H}, 6.85 ; \mathrm{N}, 4.15 \% ; M$, 337.1678)

(3R,4R)-1-Diphenylmethyl-3-ethyl-4-hydroxyethylazetidin-2-

 one 9A solution of compound $8(250 \mathrm{mg}, 0.742 \mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ was added to a stirred suspension of $\mathrm{LiAlH}_{4}(56.4 \mathrm{mg}$, 1.48 mmol) at $0^{\circ} \mathrm{C}$ under nitrogen. After 20 min , AcOEt (5 $\left.\mathrm{cm}^{3}\right)$ and aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(0.5 \mathrm{~cm}^{3}\right)$ were added to the mixture which was then passed through a Celite pad to remove the precipitate. Concentration and purification of the filtrate by PLC eluting with 60% AcOEt in hexane gave compound $9(156 \mathrm{mg}, 68 \%)$ as a
yellow oil; $[\alpha]_{\mathrm{D}}^{21}+1.06\left(c 1.41, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3620,3440$, 3010, 2970, 2940 and $1740 ; \delta_{\mathrm{H}} 0.97$ (3 H, t, J7.4, MeCH $)_{2}$, 1.43$1.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{MeCH} \mathrm{H}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.80(1 \mathrm{H}, \mathrm{ddd}, J 2.0$, 6.1 and $8.1,3-\mathrm{H}), 3.36(1 \mathrm{H}$, ddd, $J 2.0,5.9$ and $9.6,4-\mathrm{H}), 3.53(2$ $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 6.1, \mathrm{CH}_{2} \mathrm{OH}\right), 5.96\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh} \mathrm{P}_{2}\right)$ and $7.24-7.40(10 \mathrm{H}$, m, ArH); m/z $309\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 309.1700 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires $M, 309.1729$).

($3 R, 4 R$)-3-Ethyl-4-hydroxyethylazetidin-2-one $\mathbf{1 0}^{10}$

A solution of $\mathrm{Na}(44.9 \mathrm{mg}, 1.95 \mathrm{mmol})$ in liq. $\mathrm{NH}_{3}-\mathrm{THF}$ was added to a solution of compound $9(100 \mathrm{mg}, 0.324 \mathrm{mmol})$ in THF ($3 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under nitrogen. The resulting blue solution was stirred at that temperature for 1 h after which solid $\mathrm{NH}_{4} \mathrm{Cl}$ was added to it and the resulting colourless solution was warmed to room temperature to distil off NH_{3}. Ether was added to the residue to give an insoluble white precipitate which was filtered off. Concentration of the filtrate and purification of the residue by PLC eluting with $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave compound $\mathbf{1 0}(37.6 \mathrm{mg}, 81 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}^{21}+21.6\left(c 0.353, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3630,3410,3020$, 2970, 2940 and 1750; $\delta_{\mathrm{H}} 1.02\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{MeCH}_{2}\right), 1.59-1.97$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{MeCH} \mathrm{H}_{2}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 2.74-2.79 (2 H , br m, 3-H and OH$), 3.47(1 \mathrm{H}$, ddd, $J 2.2,5.0$ and $8.1,4-\mathrm{H}), 3.68-3.83(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right)$ and $6.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m / z 143\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 143.0961 . \mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $M, 143.0947$).

($\mathbf{3 R}, 4 R$)-1-tert-Butyldimethylsilyl-4-tert-butyldimethyl-silyloxyethyl-3-ethylazetidin-2-one $11^{10,11}$

A solution of compound $10(8.3 \mathrm{mg}, 0.058 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with 2,6-dimethylpyridine ($65.8 \mathrm{mg}, 0.615 \mathrm{mmol}$) and then with TBDMSOTf $(61.2 \mathrm{mg}, 0.232 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under nitrogen, with stirring. After 1 h , the reaction was quenched with $\mathrm{MeOH}\left(0.17 \mathrm{~cm}^{3}\right)$ and the mixture was evaporated. Purification by PLC eluting with 20% AcOEt in hexane gave compound 11 (21.7 mg , quant.) as a colourless oil; $[\alpha]_{\mathrm{D}}^{22}-40.9$ (c $\left.1.02, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{13}[\alpha]_{\mathrm{D}}^{25}-39.6\left(c 2.92, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 2960, 2930, 2860 and $1720 ; \delta_{\mathrm{H}} 0.0368,0.0404,0.199$ and 0.233 (total 12 H , each s, $\mathrm{SiMe}_{2} \times 2$), 0.88 and 0.95 (total 18 H , each $\mathrm{s}, \mathrm{Bu}^{\mathrm{t}} \times 2$), $1.00\left(3 \mathrm{H}, \mathrm{t}, J 7.4, M e \mathrm{CH}_{2}\right), 1.51-1.81(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{MeCH}_{2} \mathrm{Me}, \mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{CH}_{2} \mathrm{O}\right), 2.01-2.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}} \mathrm{CH}_{2} \mathrm{O}\right)$, $2.79(1 \mathrm{H}$, ddd, $J 2.3,6.3$ and $7.9,3-\mathrm{H}), 3.37(1 \mathrm{H}, \mathrm{td}, J 2.6$ and 10.6, 4-H) and 3.56-3.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$); m/z $314\left(\mathrm{M}^{+}-\right.$ Bu^{t}) [Found: C, 61.4; H, 10.95; N, 3.75\%; ($\left.\mathrm{M}^{+}-\mathrm{Bu}^{t}\right)$, $314.1948 . \mathrm{C}_{19} \mathrm{H}_{41} \mathrm{NO}_{2} \mathrm{Si}_{2}$ requires $\mathrm{C}, 61.40 ; \mathrm{H}, 11.10 ; \mathrm{N}, 3.75 \%$; $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}_{2}$ requires $m / z 314.1972$].

References

1 Asymmetric Pummerer rearrangement; (a) J. E. McCormick and R. S. McElhinney, Chem. Commun., 1969, 171; (b) S. Glue, I. T. Kay and M. R. Kipps, Chem. Commun., 1970, 1158; (c) T. Numata and S. Oae, Tetrahedron Lett., 1977, 1337; (d) T. Numata, O. Itoh and S. Oae, Chem. Lett., 1977, 909; (e) M. Mikolajczyk, A. Zatorski, S. Grzejszczak, B. Costisella and W. Midura, J. Org. Chem., 1978, 43, 2518; (f) T. Numata, O. Itoh and S. Oae, Tetrahedron Lett., 1979, 1869; (g) T. Masuda, T. Numata, N. Furukawa and S. Oae, J. Chem. Soc., Perkin Trans. 2, 1978, 1302; (h) T. Numata, O. Itoh, T. Yoshimura and S. Oae, Bull. Chem. Soc. Jpn., 1983, 56, 257; (i) O. Itoh, T. Numata, T. Yoshimura and S. Oae, Bull. Chem. Soc. Jpn., 1983, 56, 266. Asymmetric additive Pummerer reaction (enantioselective 3,3-sigmatropic rearrangement); J. P. Marino and A. D. Perez, J. Am. Chem. Soc., 1984, 106, 7643.
2 Reviews, see: (a) S. Oae and T. Numata, The Pummerer and Pummerer Type of Reactions, in Isotopes in Organic Chemistry, ed. E. Buncel and C. C. Lee, Elsevier, New York, 1980, vol. 5, ch. 2; (b) O. D. Lucchi, U. Miotti and G. Modena, Organic Reac. (N.Y.) 1990, 40, 157.

3 (a) B. Stridsberg and S. Allenmark, Acta Chem. Scand., Ser. B, 1974, 28, 591; 1976, 30, 219; (b) S. Wolfe, P. M. Kazmaier and H. Auksi, Can. J. Chem., 1979, 57, 2404; (c) T. Kaneko, Y. Okamoto and K. Hatada, J. Chem. Soc., Chem. Commun., 1987, 1511.

4 Y. Kita, O. Tamura, T. Miki, H. Tono, N. Shibata and Y. Tamura, Tetrahedron Lett., 1989, 30, 729.
5 (a) Y. Kita, H. Yasuda, O. Tamura, F. Itoh and Y. Tamura, Tetrahedron Lett., 1984, 25, 4681; (b) Y. Kita, H. Yasuda, O. Tamura, F. Itoh and Y. Tamura, Chem. Pharm. Bull., 1985, 33, 4235; (c) Y. Kita, O. Tamura, F. Itoh, H. Yasuda, T. Miki and Y. Tamura, Chem. Pharm. Bull., 1987, 35, 562.

6 (a) Y. Kita, O. Tamura, T. Miki and Y. Tamura, Tetrahedron Lett., 1987, 28, 6479; (b) Y. Kita, O. Tamura, N. Shibata and T. Miki, J. Chem. Soc., Perkin Trans. I, 1989, 1862; (c) Y. Kita, O. Tamura, N. Shibata and T. Miki, Chem. Pharm. Bull., 1990, 38, 1473; (d) Y. Kita, N. Shibata, T. Miki, Y. Takemura and O. Tamura, J. Chem. Soc., Chem. Commun., 1990, 727; (e) Y. Kita, N. Shibata, O. Tamura and T. Miki, Chem. Pharm. Bull., 1991, 39, 2225; (f) Y. Kita, N. Shibata, T. Miki, Y. Takemura and O. Tamura, Chem. Pharm. Bull., 1992, 40, 12.
7 (a) Y. Kita, N. Shibata and N. Yoshida, Tetrahedron Lett., 1993, 34, 4063; (b) Y. Kita, N. Shibata, N. Yoshida, S. Fukui and C. Fujimori, Tetrahedron Lett., 1994, 35, 2569; (c) Y. Kita, N. Shibata, N. Yoshida and S. Fujita, J. Chem. Soc., Perkin Trans. 1, 1994, 3335; (d) Y. Kita, N. Shibata, S. Fukui and S. Fujita, Tetrahedron Lett., 1994, 35, 9733.
8 Y. Kita, N. Shibata, N. Kawano, T. Tohjo, C. Fujimori and K. Matsumoto, Tetrahedron Lett., 1995, 36, 115.

9 A. Albinati, P. Bravo, F. Ganazzoli, G. Resnati and F. Viani, J. Chem. Soc., Perkin Trans. 1, 1986, 1405.

10 (a) A. Yoshida, T. Hayashi, N. Takeda, S. Oida and E. Ohki, Chem. Pharm. Bull., 1981, 29, 1854 and 2899; (b) M. Shibasaki, A. Nishida and S. Ikegami, J. Chem. Soc., Chem. Commun., 1982, 1324; (c) A. Nishida, M. Shibasaki and S. Ikegami, Tetrahedron Lett., 1984, 25, 765.
11 H. Rehling and H. Jensen, Tetrahedron Lett., 1972, 2793
12 The formation of the acylaminosulfonium ion (isothiazolone B) as an intermediate has been widely accepted under Pummerer-type conditions; (a) Y. Uchida and S. Kozuka, J. Chem. Soc., Chem. Commun., 1981, 510; (b) T. Kaneko, J. Am. Chem. Soc., 1985, 107, 5490; (c) Y. Uchida and S. Oae, Gazz. Chim. Ital., 1987, 117, 640; (d) K. Yamamoto, S. Yamazaki and I. Murata, J. Org. Chem., 1987, 52, 5239; (e) S. W. Wright, M. M. Abelman, L. L. Bostrom and R. C. Corbett, Tetrahedron Lett., 1992, 33, 153.

13 C. Gennari and P. G. Cozzi, J. Org. Chem., 1988, 53, 4015; M. Shibasaki, Y. Ishida, G. Iwasaki and T. Iimori, J. Org. Chem., 1987, 52, 3488.
14 K. Okano, T. Izawa and O. Masaji, Tetrahedron Lett., 1983, 24, 217.

Paper 5/03255E
Received 22nd May 1995
Accepted 6th June 1995

